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Abstract 

In the medical imaging field, nuclear medicine employs a variety of image 

analysis methodologies, including single-photon emission computed 

tomography (SPECT) and positron emission tomography (PET). These 

techniques offer the radiologist supplementary information that aids in the 

precise analysis and diagnosis of various diseases. A PET system is a 

functional imaging technique that relies on the capture of two gamma photons 

from a radioisotope that has accumulated in a target, whereas a SPECT scan is 

a functional imaging technique that relies on the capture of a single gamma 

photon from a radioisotope within a target. Radiopharmaceutical materials are 

indispensable for PET and SPECT examinations. In order to determine the 

localisation and distribution of radioisotopes within the body, they are 

designed as molecules that transport radioisotopes to the target. In summary, 

the primary distinction between SPECT/CT and PET/CT imaging techniques is 

the manner in which they detect the photons emitted by radiopharmaceuticals 

that have been loaded with radioisotopes after being absorbed by the body. The 

selection of radioactive material and radiopharmaceuticals is contingent upon 

the target's metabolism process within the body, the radionuclide's physical 

half-life, and the molecule's size. 

 

Introduction 

In nuclear medicine, a diverse range of image analysis methodologies are currently implemented 

within the field of medical imaging, providing the radiologist with additional information to facilitate 

the accurate analysis and diagnosis of diseases. Consequently, the radiologist is now capable of 

identifying abnormalities in the body with a significantly higher degree of precision. Therefore, 

functional imaging techniques, such as PET and SPECT, have become indispensable to clinical 
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decisions in numerous medical specialties. As a result, hybrid imaging, which integrates with 

computed tomography (CT), PET/CT or SPECT/CT, or with magnetic resonance imaging (MRI), 

PET/MRI or SPECT/MRI, has enhanced diagnostic accuracy by utilizing the combined functional 

and anatomical information from PET and MRI scans, as well as correcting for attenuation [1]. 

PET/MRI and SPECT/MRI have been shown to be superior to PET or SPECT alone. However, the 

approach that will ultimately dominate nuclear imaging techniques remains unclear.[2]

Radiopharmaceutical materials are essential to PET and SPECT examinations [3]. They are designed 

as molecules capable of delivering radioisotopes to a given target in order to ascertain the localisation 

and distribution of radioisotopes within the body [4]. A variety of radiopharmaceuticals are used in 

the SPECT and PET imaging techniques to support clinical decision making. For example, 99mTc-

sestamibi and 99mTc-tetrofosmin are used in SPECT scans to find heart ischaemia, and 18-

fluorodeoxyglucose (FDG) is used in PET scans to find breast cancer [5]. Malignant cells have a 

greater metabolism than normal cells, so they uptake radioisotopes more rapidly than healthy cells. 

This means that the targeted tissues absorb these materials to a faster and greater extent than the 

surrounding tissues [6]. Although radiopharmaceuticals are considered safe medical products [7], 

side effects should not be ignored, which include effects on bone health due to radioactive materials 

[8-10]. The progress of radiopharmaceuticals associated with diagnosis and therapy protocol In order 

to carry the radioactive material to the target [4]. The main aim of the article is to explain the role of 

functional imaging techniques (PET and SPECT scans) in the radiological diagnosis of various 

diseases, as well as the impact of radiopharmaceuticals in diagnosis. 

Positron Emission Tomography (PET) scan 

A PET scan is a functional imaging technique that detects two gamma photons emitted in opposing 

directions (180º), each with energy of 511 keV, due to the annihilation of a radioisotope concentrated 

in the target organ. This technique observes metabolic activities within the human organism [11]. 

Consequently, it is possible to ascertain the position of a source along a line of response (LOR) [12]. 

A multitude of detectors encircles the patient in a PET system, capturing gamma rays emitted from 

the target which are utilised to create two-dimensional pictures. The software subsequently 

reconstructs these images to generate three-dimensional representations of the radiopharmaceutical 

concentrations within the target [13].  PET scans can visualise certain diseases, including 

neurological and cardiovascular ailments. PET scans utilising diverse radiopharmaceuticals provide 

dependable insights into dementia, assisting radiologists in diagnosing distinct dementia-related 

illnesses [14,15]. In practical applications, PET can differentiate between benign and malignant 

solitary pulmonary nodules measuring between 0.6 and 3 cm when X-ray findings are ambiguous 
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[16]. The PET technique is predicated on the capture of photons emitted from a radioisotope, which 

is typically administered via intravenous administration [17]. The PET imaging technique is most 

frequently employed to assess the rate at which glucose is utilized in various regions of the body by 

utilizing the accumulation of the radioactive glucose analogue 18-fluorodeoxyglucose (FDG), which 

is considered the gold standard PET radiopharmaceutical [18]. This technique is employed for whole-

body scans to stage and position tumours, as malignant tumours metabolize glucose at a faster rate 

than benign ones [19]. Additional applications of PET scans include the monitoring and diagnosis of 

Parkinson's disease, the assessment of myocardial viability in cardiology, and the monitoring of 

blood flow and oxygen utilization in the brain [20]. 

Single-Photon Emission Computed Tomography (SPECT) scan 

SPECT scans use target-emitted gamma photons for functional imaging. SPECT systems can use one 

or more gamma cameras on a gantry to record images from a range of viewing angles and similar 

time intervals around the body [21]. Gamma camera heads rotate around the subject to evaluate organ 

function. Two cameras require simultaneous 180° coverage, though triple-head cameras with 120° 

coverage can also be employed, while a four-headed system needs only 90° coverage [22]. Multiple 

heads boost sensitivity by covering the solid angle for the targeted tissue, lowering gamma-ray 

attenuation, and minimising the angular range of motion required to gain complete target data. Thin 

slices along any imaging axis of the target illustrate the radioisotope's distribution [23]. SPECT 

imaging is performed by administering a radiopharmaceutical [24]. The administered radioisotope 

concentrates in particular regions of the human body, depending on the type of examination 

conducted; for example, it will highlight the gallbladder and bile duct during a hepatobiliary scan, 

and bone during a bone scan. In most instances, a complete 360° rotation is employed to provide 

comprehensive images of specific tissues. The image acquisition duration varies between 15 and 30 

minutes [25]. 

Comparison between PET vs SPECT scan  

PET technology provides superior resolution, reduced attenuation (high photon energy), and fewer 

scatter artifacts, hence improving diagnostic capabilities relative to SPECT [10]. PET is a potent and 

versatile instrumenting applicable in both clinical and research fields. Its superior sensitivity and 

adaptability as a tracer are its key advantages over SPECT [26]. However, the use of PET imaging is 

somewhat restricted by the substantial cost associated with its use. The nuclear medicine department 

of the hospital is obligated to synthesize the majority of positron-emitting radioisotopes using 

cyclotrons due to their brief half-lives [27]. One of the advantages of SPECT imaging is that 

radiopharmaceuticals are easier to provide than those required for PET scans [28]. SPECT has 

targeting capabilities for active tissues due to the single photon emitters, facilitating the precise 
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characterization of biological processes within the human body, which occur within many hours after 

the administration of the radioactive compound. Positron emission tomography (PET) is used with 

short physical half-life isotopes, including carbon-11 (20.4 min) and fluorine-18 (109.7 min), to 

measure biological processes within the body [29]. Additionally, it is widely used as a tool to detect 

specific molecules within the body. Radiopharmaceuticals were recognized in the 1960s with regard 

to their utility in in vivo diagnostic and therapeutic applications [30]. Single-photon emission 

computed tomography (SPECT) constitutes nearly 80% of all nuclear medicine scans conducted 

globally [31]. PET offers the benefit of increased resolution and sensitivity; however, SPECT is 

cheaper and more readily accessible [32]. In clinical trials, a diverse array of radiopharmaceuticals 

has been tested and evaluated that are now used in the diagnosis of a broad spectrum of diseases, they 

are all required to achieve the same criteria as imaging agents: high specificity, low toxicity, stability, 

rapid clearance from non-targeted tissue, and be low-cost [11]. To be suitable for a specific biological 

target, there are several factors that should be considered when dealing with radiopharmaceuticals; 

for instance, the radionuclide must have an acceptable half-life, the length of which is dependent on 

the intended application. The size and amount of the radiopharmaceuticals is directly related to the 

specificity of the biological target, which is in turn dependent on the metabolism and tissue 

components of the target, the body mass index of the patient, and the size of the target's cells. 

Therefore, quality control studies require consideration of physical, chemical, radiological, and 

biological properties [33, 34]. As medical applications that employ ionising radiation, the advantages 

of PET and SPECT procedures must be assessed in relation to the potential risks to patients. The 

procedure entails the administration of a suitable quantity of radioactive material to generate high-

quality images that provide the requisite clinical information while simultaneously minimising the 

patient's exposure to radiation [35]. Therefore, the dose administered must be established by 

evaluating several pertinent factors, including the configuration of the imaging equipment utilized for 

the diagnosis, the target's location, and the body's metabolism [36]. The effective dose for functional 

imaging scanning can be up to 20 mSv, with SPECT scans requiring lower effective doses than PET 

scans [37]. This is primarily due to the characteristics of the radioisotopes used with PET and SPECT 

scans. The average dose that works for a 99mTc(I)-sestamibi SPECT scan with 1500 MBq of activity 

is 12.8 mSv during a cardiac scan. On the other hand, the effective dose for an FDG PET scan with 

an administered activity of 740 MBq is 14.1 mSv [38]. The integration of a CT scan in hybrid 

systems leads to heightened radiation exposure. The increased radiation dose is contingent upon 

whether the CT scan is being employed for diagnostic acquisition, localisation, or attenuation 

correction [39]. The primary limitation of PET and SPECT scans, which is the localisation of uptake, 

can be addressed via hybrid imaging (PET/CT and SPECT/CT scans) [13]. The creation of new PET 

radiopharmaceuticals is currently considered extremely important because PET/CT imaging is now 
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seeing widespread use in clinical settings. Nevertheless, SPECT remains a significant component of 

nuclear medicine imaging, as discussed in recent reviews [3]. 

Conclusions 

The basic distinction between the SPECT/CT and PET/CT imaging techniques is based on the 

manner in which the radiopharmaceuticals loaded with radioisotopes are absorbed by the body. 

Consequently, SPECT/CT and PET/CT scans will retain the benefit of imaging patients in which the 

radiopharmaceuticals are absorbed over an extended duration. Moreover, advancements in this 

technology are expected to enhance scan quality, minimise patient exposure to radiation from the 

radionuclide (SPECT or PET) and X-ray emissions from CT scans, and reduce scan duration. 

The selection of appropriate radiopharmaceuticals and radioactive materials for use in such scans is 

dependent on the target's metabolism, the radionuclide's half-life, the molecular size, the composition 

of the targeted tissues, the purpose of the scan, and the patient's mass and height. 
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